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Abstract

* Four different model pipelines with end-to-end or non-end-to-end
designs for the GelSight 3D reconstruction task were designed
and compared to explore their performance and details of their
differences.

* The non-end-to-end model pipeline that appropriately incorporate
prior knowledge has better performance 1n terms of
reconstruction accuracy, training speed, and the number of
training samples required in the experiment.

* Inappropriate or even mutually exclusive prior knowledge can
also lead to negative etfects.

@ Motivation

GelSi1ght sensor uses a camera and 1llumination sources from
different directions to capture an image, which contains the 3D
gradient information of the target surface.
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Fig. 1 The workflow of 3D reconstruction based on GelSight sensors.

Current GelSight-based 3D reconstruction model pipelines can be
broadly divided into two categories: end-to-end model pipelines and
non-end-to-end one. Both of them enrolls prior knowledge problems
which set some questions:

 Which model pipeline performs better for GelSight-based 3D
reconstruction tasks, the end-to-end or the non-end-to-end one?
* Is it always better and in which aspects?
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» EXPERIMENT DESIGN:

We conducted the following four experiments according to
workflow map in Fig. 1 to test the effect of different prior
knowledge mapped with deep learning model from:

* A—D (no prior knowledge) ¢ B—D (A—B as known)
* A—C (C—D as known) * B—»C (A—B&C—D as known)

The height maps are reconstructed by minimizing an error
function E using the 2D fast Poisson solverl!

: 2 .
E:_z (Zh+c;) +(5+a)
where G; 1s the Vertlcal gradient, G; 1s the horizontal
direction, and h 1s the height map to be reconstructed.
» DATASET:
The dataset was collected by a real GelSight sensor
containing 143 samples.

» EXPERIMENTAL SETUP:

Deep learning models used 1n the experiments are the same
U-Net-like structures to avoid additional variables.
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Fig. 2 The U-Net-like structure of the models used 1n experiments.
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The loss function used 1s an L2 regression loss function
where [+ 18 the 1image output and Ii,pget 18 the target image.
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Fig. 3 Results of the representative samples 1n validation and test set.
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The results shows that:

* The model pipeline with the most prior knowledge 1n
Experiment 4 achieves the highest reconstruction accuracy.

 Removing the background with prior knowledge significantly
improves the reconstruction accuracy in Experiments 3 and 4
but leads to a decrease in Experiments 1 and 2.

Table 1 The lowest validation RMSE loss for the four experiments

Experiment# PR prior knowledge  RMSE
1 A—D - 0.0708
2 B—D A—B 0.0763
3 A—C C—-D 0.0707
4 B—C A—B & C—D 0.0616

The model converges faster and achieves lower training loss also need

less samples when more prior knowledge 1s added approprlately
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Fig. 4 (a) Training processes of the deep learning models in Experiments 3
and 4. (b) Performance using different numbers of training samples in
Experiments 3 and 4.

& Conclusion

The non-end-to-end model pipelines that appropriately incorporate
prior knowledge outperform the end-to-end models that do not
incorporate prior knowledge.

* Inappropriate prior knowledge may have negative effects.
Prior knowledge 1s not independent of each other but 1s related.
When a set of mutually compatible and complementary prior
knowledge 1s added to the model pipeline, the performance will be
improved. Otherwise, the performance will be degraded.
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