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1 A→D - 0.0708

2 B→D A→B 0.0763

3 A→C C→D 0.0707

4 B→C A→B & C→D 0.0616
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• Four different model pipelines with end-to-end or non-end-to-end
designs for the GelSight 3D reconstruction task were designed
and compared to explore their performance and details of their
differences.

• The non-end-to-end model pipeline that appropriately incorporate
prior knowledge has better performance in terms of
reconstruction accuracy, training speed, and the number of
training samples required in the experiment.

• Inappropriate or even mutually exclusive prior knowledge can
also lead to negative effects.

Abstract

Motivation

Fig. 1 The workflow of 3D reconstruction based on GelSight sensors.

Method

➢ EXPERIMENT DESIGN:

We conducted the following four experiments according to
workflow map in Fig. 1 to test the effect of different prior
knowledge mapped with deep learning model from:

• Which model pipeline performs better for GelSight-based 3D
reconstruction tasks, the end-to-end or the non-end-to-end one?

• Is it always better and in which aspects?

Current GelSight-based 3D reconstruction model pipelines can be
broadly divided into two categories: end-to-end model pipelines and
non-end-to-end one. Both of them enrolls prior knowledge problems
which set some questions:

GelSight sensor uses a camera and illumination sources from
different directions to capture an image, which contains the 3D
gradient information of the target surface.

• A→D (no prior knowledge)
• A→C (C→D as known)

• B→D (A→B as known)
• B→C (A→B&C→D as known)

Ground TruthInput Experiment 1 Experiment 2 Experiment 3 Experiment 4

Deep learning models used in the experiments are the same
U-Net-like structures to avoid additional variables.
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Numerical Results

➢ DATASET:

The dataset was collected by a real GelSight sensor
containing 143 samples.

➢ EXPERIMENTAL SETUP:

Fig. 3 Results of the representative samples in validation and test set.
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The height maps are reconstructed by minimizing an error
function 𝐸 using the 2D fast Poisson solver[1].

where 𝐺𝑖 is the vertical gradient, 𝐺𝑗 is the horizontal
direction, and ℎ is the height map to be reconstructed.

The loss function used is an L2 regression loss function
where 𝐼out is the image output and 𝐼target is the target image.

Fig. 2 The U-Net-like structure of the models used in experiments.

The results shows that:

• The model pipeline with the most prior knowledge in
Experiment 4 achieves the highest reconstruction accuracy.

• Removing the background with prior knowledge significantly
improves the reconstruction accuracy in Experiments 3 and 4
but leads to a decrease in Experiments 1 and 2.

Conclusion

• The non-end-to-end model pipelines that appropriately incorporate
prior knowledge outperform the end-to-end models that do not
incorporate prior knowledge.

• Inappropriate prior knowledge may have negative effects.
• Prior knowledge is not independent of each other but is related.
• When a set of mutually compatible and complementary prior

knowledge is added to the model pipeline, the performance will be
improved. Otherwise, the performance will be degraded.
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Table 1 The lowest validation RMSE loss for the four experiments
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Fig. 4 (a) Training processes of the deep learning models in Experiments 3

and 4. (b) Performance using different numbers of training samples in

Experiments 3 and 4.

The model converges faster and achieves lower training loss also need
less samples when more prior knowledge is added appropriately.
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