
Lithium-ion batteries (LiBs).

TL model is 91%.

prediction methods in the future.

OC settings: (1) medium Discharging Intensity

(7) min IR , (8) max IR, (9) dif IR

ww.PosterPresentations.c

(10) integral of temperature by time.

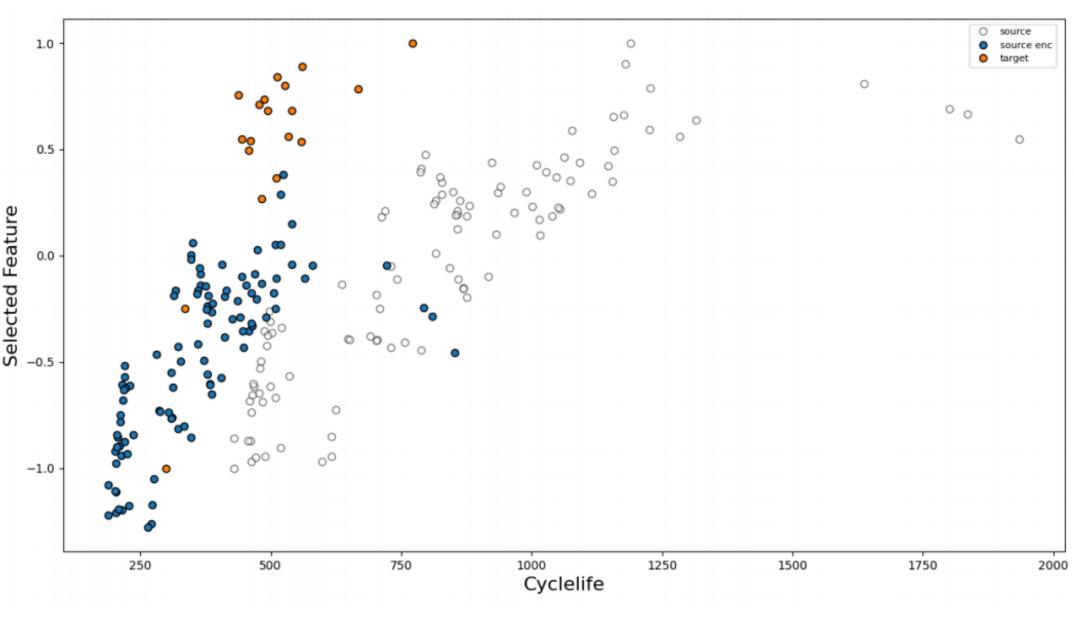
Remaining useful life prediction for Lithium-ion batteries across operation conditions by CORAL

Shengyu Tao, Huazhang Ying, Tingwei Cao

Tsinghua Shenzhen International Graduate School

$$f \int_{Y \times Y} |x - y|^p d\gamma(x, y) \Big)^{\frac{1}{p}}$$

- Kantorovich-Wasserstein distance measure between
- condition and the medium cycle rate condition for the selected 10 features. When the distance value is small, selected features is higher.


When to transfer

determines when to transfer.

	1	2	3	4	5	6	7	8	9	10	
16	0.4762	0.1742	0.1895	0.1556	1.311	0.687	0.1572	0.08976	0.09021	1.323	
15	0.5876	0.204	0.1862	0.2105	1.272	0.6874	0.2224	0.1123	0.1672	1.334	- 0.
14	0.5319	0.2447	0.1905	0.2466	1.248	0.6873	0.3079	0.1552	0.2278	1.346	
13	0.4856	0.2806	0.1775	0.143	1.183	0.6921	0.3512	0.1945	0.2737	1.358	- 0.
12	0.7648	0.3976	0.2192	0.3198	1.248	0.6921	0.318	0.2747	0.3196	1.353	
11	0.8415	0.4539	0.2086	0.3223	1.212	0.6925	0.4138	0.3273	0.3194	1.364	- 0.
, 10	0.9141	0.5618	0.213	0.3529	1.051	0.6994	0.4619	0.376	0.3113	1.375	
	0.9771	0.7381	0.2644	0.4374	1.058	0.6994	0.5364	0.3985	0.3289	1.383	
7 8 0	1.047	0.7992	0.2708	0.402	0.8702	0.7026	0.614	0.4155	0.3468	1.387	- 0.
7	1.127	0.9064	0.3142	0.4676	0.924	0.6851	0.7021	0.4417	0.3579	1.395	
6	1.201	0.9839	0.3216	0.4665	0.9155	0.6835	0.6983	0.4633	0.3589	1.406	- 1
5	1.25	1.084	0.3466	0.5735	1.01	0.6951	0.7004	0.5287	0.3214	1.419	
4	1.294	1.139	0.3358	0.1193	0.9802	0.672	0.7051	0.5946	0.2571	1.437	- 1.
3	1.355	1,199	0.2441	0.3818	0.9657	0.6702	0.7143	0.4533	0.2545	1.453	
2	1.409	1.213	0.2276	0.2687	0.5891	0.6616	0.7092	0.6911	0.3433	1.489	- 1.
1	1.467	1.467	0.09159	0.07392	0.5167	0.6801	0.7202	0.3253	0.1791	0.9342	

How to transfer

Use optimal transport algorithms such as CORAL.

1. After Domain adaption, the performance of the model is better.

OC	MAE	MSE	RMSE	Err(%)
Baseline2	67.8589	9419.9873	90.5153	14.1475
CORAL	42.7514	3333.896	53.8341	8.2736

2. Features with smaller Kantorovich-Wasserstein distance are more likely to be universal features.

The transferability against cycle evolution number

Features

Conclusion