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ABSTRACT

* We proposed a model in adolescent mental health
identification on speech data.

e Based on LSTM/GRU, this model can learn contextual
features among uttrances while using the features of a
single speech, so as to judge the mental health of
adolescents.

* Through experiments, our model can achieve good
classification results.

INTRODUCTION

* Adolescence: a critical period for physical and mental
development.

» At present, there are few deep learning researches in
adolescent mental health, and very few related studies
using speech data.

* Current screening method: combination tests of mental
health questions (low pertinence, easy to deceive).

* Deep learning: to extract audio data features and
analyze (accurate, time-saving, meaningful).

METHOD

e Data Preprocessing (Figure 1, 2)

e Feature Extraction of each Uttrance (Figure 3)
e Model: Contextual-LSTM/GRU/BiLSTM/BiGRU (Figure 4)
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Figure 2. Noise Reduction & Endpoint Detection
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Figure 3. Feature Extraction of a Single Speech (a)

Software tool: openSMILE3.0; b) Extracted 1S10 speech
features; c) Features after Z-score standardization)
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Figure 4. Model: ContextuaI-LSTI\/I/GRU/BiLSTIVI/BiGRUW

RESULTS

Table 1. Verification of the necessity of data
preprocessing and standardization

Data Processing Standardization Acc
Raw Data (No Processing) N 0. 6104
Y 0. 6427
Noise Reduction N 0. 6526
Y 0. 7866
Noise Reduction + Endpoint N 0. 6948
Detection and Separation Y 0. 8313

Table 2. Experimental results of different models

Model Feature Acc F1 score Precision Recall
C-LSTM [S09 0.8313 0. 8384 0. 8249 0. 8524
[S10 0. 8511 0. 8497 0. 8682 0. 8319
C—GRU IS09 0.8412 0. 8498 0. 8388 0. 8619
[S10 0. 8437 0. 8431 0. 8532 0. 8333
C-BiLSTM 1S09 0. 8462 0. 8537 0. 8570 0. 8504
[S10 0. 8660 0. 8672 0. 8758 0. 8590
C-BiGRU [S09 0. 8437 0. 8558 0. 8498 0. 8619
[S10 0. 8561 0. 8547 0. 8814 0. 8295

CONCLUSIONS

e \We classify the speech data of teenagers, judge their
mental health status,assist intelligent medical treatment.

e In this task, bidirectional contextual models and LSTM
based models perform slightly better.

e |t is a desirable way to make use of contextual features
among uttrances while using the acoustic features of
each uttrance.

e Future: multi-class classification (depression, anxiety,
etc.); multimodal data fusion (with video, text, etc.).
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