

ABSTRACT

• We proposed a model in adolescent mental health identification on speech data.

• Based on LSTM/GRU, this model can learn contextual features among uttrances while using the features of a single speech, so as to judge the mental health of adolescents.

• Through experiments, our model can achieve good classification results.

INTRODUCTION

- Adolescence: a critical period for physical and mental development.
- At present, there are **few** deep learning researches in adolescent mental health, and very few related studies using speech data.
- Current screening method: combination tests of mental health questions (low pertinence, easy to deceive).
- **Deep learning**: to extract audio data features and analyze (accurate, time-saving, meaningful).

METHOD

• **Data Preprocessing** (Figure 1, 2)

www.PosterPresentations.cor

- Feature Extraction of each Uttrance (Figure 3)
- Model: Contextual-LSTM/GRU/BiLSTM/BiGRU (Figure 4)

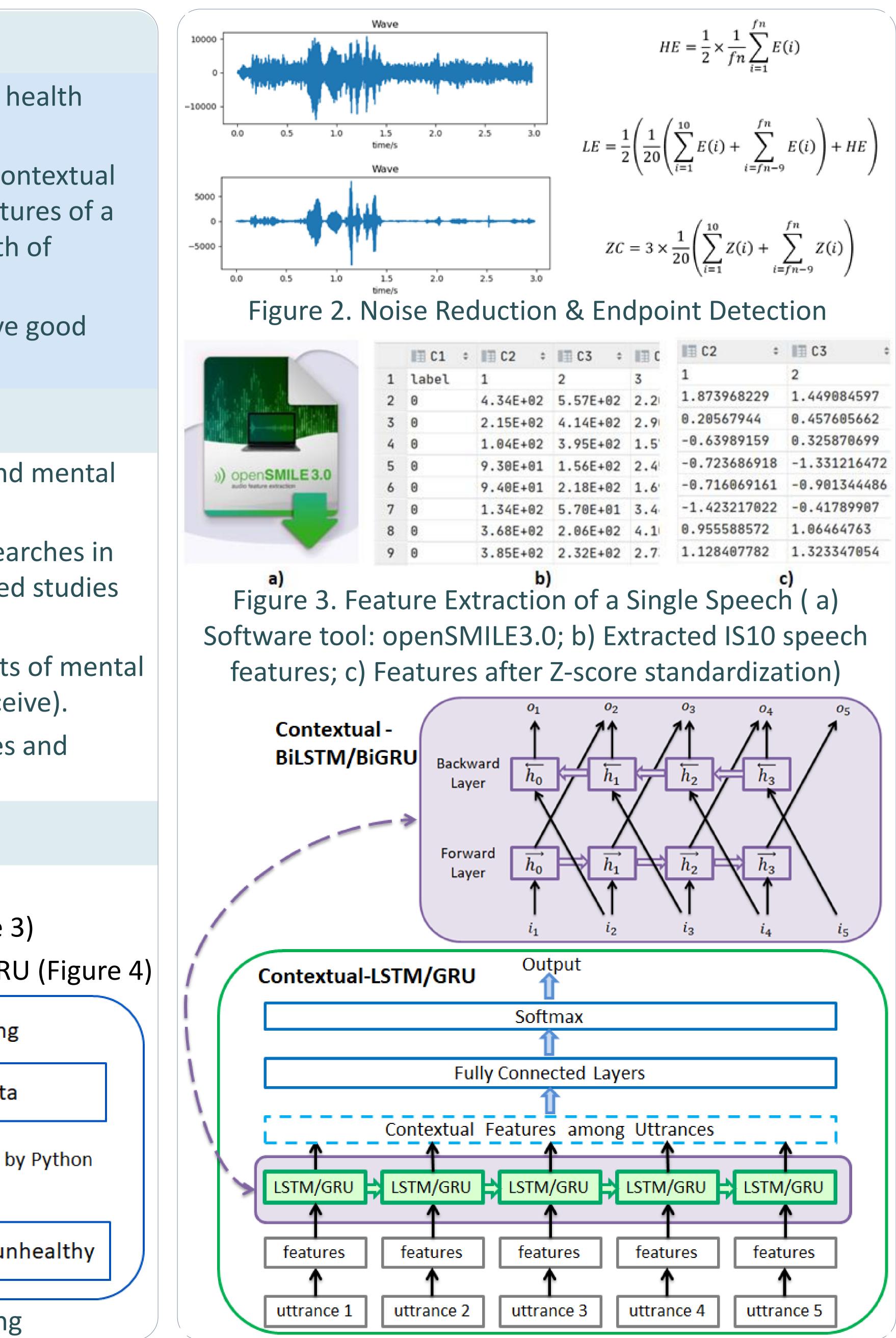
healthy	Data Cleaning
 unhealthy 00002-0104 00002-0104-0.wav 	1559 raw data
00002-0104-1.wav 00002-0104-2.wav 00002-0104-3.wav	Batch preprocessing b & Hand filtering
 00002-0110 00002-0120 	1095 healthy, 313 ur

Figure 1. Dataset and Data Cleaning

Learning Adolescent Mental Health from Speech Data

Yuqi Wang and Shurui Bai

iBHE, Tsinghua University, China



$$HE = \frac{1}{2} \times \frac{1}{fn} \sum_{i=1}^{fn} E(i)$$

$$\frac{1}{2}\left(\frac{1}{20}\left(\sum_{i=1}^{10}E(i)+\sum_{i=fn-9}^{fn}E(i)\right)+HE\right)$$

$$C = 3 \times \frac{1}{20} \left(\sum_{i=1}^{10} Z(i) + \sum_{i=fn-9}^{fn} Z(i) \right)$$

¢	11 C	III C2 ÷	🗐 C3 🗘		
	3	1	2		
2	2.2	1.873968229 1.4490845			
2	2.9	0.20567944 0.457605662			
2	1.5	-0.63989159 0.325870699			
2	2.4	-0.723686918 -1.3312164			
2	1.6	-0.716069161 -0.901344			
1	3.4	-1.423217022 -0.417899			
2	4.1	0.955588572	1.06464763		
2	2.7	1.128407782 1.323347054			

Figure 4. Model: Contextual-LSTM/GRU/BiLSTM/BiGRU

Table 1. Verification of the necessity of data preprocessing and standardization

Data Processing Raw Data (No Processing)

Noise Reduction

Noise Reduction + Endpoint Detection and Separation

Table 2. Experimental results of different models

Model	Feature	Acc	F1_score	Precision	Recall
C-LSTM	IS09	0.8313	0.8384	0.8249	0.8524
	IS10	0.8511	0.8497	0.8682	0.8319
C–GRU	IS09	0.8412	0.8498	0.8388	0.8619
	IS10	0.8437	0.8431	0.8532	0.8333
C-BiLSTM	IS09	0.8462	0.8537	0.8570	0.8504
	IS10	0.8660	0.8672	0.8758	0.8590
C-BiGRU	IS09	0.8437	0.8558	0.8498	0.8619
	IS10	0.8561	0.8547	0.8814	0.8295

CONCLUSIONS

• We classify the **speech data** of teenagers, judge their mental health status, assist intelligent medical treatment.

• In this task, **bidirectional** contextual models and **LSTM** based models perform slightly better.

• It is a desirable way to make use of **contextual features** among uttrances while using the acoustic features of each uttrance.

• Future: multi-class classification (depression, anxiety, etc.); multimodal data fusion (with video, text, etc.).

REFERENCES

[1] Poria, Soujanya, et al. "Context-dependent sentiment analysis in usergenerated videos." Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers). 2017. [2] Asokan, Ashish Ramayee, et al. "Interpretability for multimodal emotion recognition using concept activation vectors." 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022.

RESULTS

Standardization	Acc
Ν	0.6104
Y	0.6427
Ν	0.6526
Y	0.7866
Ν	0.6948
Y	0.8313