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* Extract and analyze the activity features based on a multi- _2:\f“/.—\.’/.\\./‘.\_.f

body sensor dataset.
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Euler Angles — Qutput orientation * The motion has obvious periodicity and phase interval.
 Help to divide source domain and target domain properly.

 Apply a parameter transfer-based few-shot learning Accelerometer |—— Acceleration

method with stacked LSTM model and two different cross-
domain class-wise relevance measures for human activity .

.. . o Mean f1-score in 1-shot case Mean f1-score in 5-shot case
recognition(HAR). * Multi-body sensor dataset : 9 activities captured by 5 IMU 9
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sensors attached on human bodly.
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Drawbacks of traditional human activity recognition model \/ _

. Need a large amount of data. Few-shot learning based human activity .recogrlifci.on model V ’ VN
* Use LSTM to extract features and classify activities. )
* Data for uncommon activities are hard to get. . Use source data to train the model, transfer its parameter | -
Application scenario for few-shot learning to the target side and make some fine-tuning. "6 8 10 12 1 16 18 20 2 2 2% 2 % 6 8 101 1616m D2 H® B N R
* Multiple data is available for certain activities. * FSHAR methods perform better than random initialization
* Very few data is available for some other activities. - —— | Ft;a;%r SR and fea.ture extractor transfer. | |
Cross-Domain Class Relevance —'  [Moaization : * |f the time window length is 18 and the size of hidden layer
1 in LSTM network is 22, FSHAR-SR Soft performs the best.
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