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• Develop a deep learning model to classify human activity 
properly even with few samples.

• Extract and analyze the activity features based on a multi-
body sensor dataset.

• Apply a parameter transfer-based few-shot learning 
method with stacked LSTM model and two different cross-
domain class-wise relevance measures for human activity 
recognition(HAR).
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ResultsMethods

Drawbacks of traditional human activity recognition model
• Need a large amount of data.
• Data for uncommon activities are hard to get.
Application scenario for few-shot learning 
• Multiple data is available for certain activities.
• Very few data is available for some other activities.
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Model structure

• Multi-body sensor dataset : 9 activities captured by 5 IMU
sensors attached on human body.
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Few-shot learning based human activity recognition model
• Use LSTM to extract features and classify activities.
• Use source data to train the model, transfer its parameter

to the target side and make some fine-tuning.

LSTM LSTM

• FSHAR methods perform better than random initialization
and feature extractor transfer.

• If the time window length is 18 and the size of hidden layer
in LSTM network is 22, FSHAR-SR Soft performs the best.
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• The motion has obvious periodicity and phase interval.
• Help to divide source domain and target domain properly.

• Satisfactory HAR results can be achieved even very few
training samples are available for each class.

• Transfer learning based methods can perform very excellent
when choosing appropriate time window length and the
size of hidden layer in LSTM network.


