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Data statement

Sentiment analysis has attracted increasing attention in e-
commerce. The sentiment polarities underlying user reviews are
of great value for business intelligence. Aspect category senti-
ment analysis and review rating prediction are essential tasks to
detect the fine-to-coarse sentiment polarities. While most meth-

* A large-scale Chinese restaurant review dataset ASAP, including 46,730
genuine reviews from Dianping App.

* The MSE result of the 5-star rating score classification task.

* Dataset is divided into a training set (36,850 samples), a validation set Class MSE
(4,940 samples), and a test set (4,940 samples). 1 star  0.03

ods do these two tasks on the English dataset, we propose a novel * The rating score is ranging from 1-Star to 5-Star, the larger the better. 2star  0.03
learning-based framework for them on the Chinese dataset. The sentiment polarity over 18 aspects category is labeled as Jstar  0.13
1(Positive),0(Neutral),-1(Negative),-2(Not-Mentioned). 4 star  0.26

5star  0.33

Background

Fig. 4: The MSE value of 5 classes
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Nowadays, customers often write reviews after having a meal in a
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restaurant on online platforms. These reviews and rating scores de-
scribe customers’ experiences in multiple aspects and maybe a ref-
erence when other customers make their selections. For example, if
a customer gives a 5-star rating score to the coffee shop and praises

With convenient traffic, the restaurant holds a
high-end decoration, but quite noisy because a
wedding ceremony was being held in the main
hall. Impressed by its delicate decoration and grand
appearance though, we had to wait for a while at
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* The MSE result of the Sentiment polarity over 18 aspects cate-

gory classification task.
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We formulate two tasks on sentiment analysis on dataset ASAP with Price:Level 0.55
Chllnese restaurant reviews and twp annotations: the customers Fig. 2: A review sample in ASAP Price:Cost_effective 0.87
attitude from 18 aspects and the rating scores. PriceDi ¢ 051
* Propose a method to predict aspect category sentiment scores I1cC.J1scoun :
from the Chinese restaurant comment. Ambience:Decoration 0.81
 Propose a method to predict rating prediction scores from the Chi- Ambience:Noise 0.83
nese restaurant comment. . . . . :
* The Chinese comment is encoded into an embedding by a BERT module. Amblence:Space 0.76
* Then, the aspect category sentiment scores (ACS.) and the rating predic- Ambience:S anitary 0.87
Aspect-based sentiment text-boxes tion scores (RPS.) are predicted from the embedding by CNN. :
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which was beautiful. We ordered two cups of
coffee and took them back to the office to drink.
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Fig. 1: An example of a review with the rating score from the Dianping app Fig. 3: The Framework of our method



