Multi-label Classification of Chinese Resume with Word Embedding
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ABSTRACT

Construct a series of resume-field pairs based on the
existing resume and job dataset.

Compare different word embedding methods and
dimensions with classification as the supervised task.

Develop a bi-directional LSTM model for multi-label
classification of large number of labels.
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Multi-label classification of resumes is the key to
resume-job matching for employees.

One candidate may be suitable for different fields if
he/she has enough matching experiences.

Control the dimension of word embedding to make
classification more efficient.

Traditional classifiers perform poor with the number
of labels increases.
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* Dynamic: Word representations will be trained and
updated during the training of model.

 Static: Words will be mapped to a fixed dimensional
vector by pretrained model.

Bi-directional LSTM
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e Bi-directional LSTM will read each sentence in both

positive and negative direction.
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RESULT
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Embedding Self
Accuracy 90.3% 68.9% 90.1% 89.7% 57.7% 86.3%

* Among word embedding methods, un-pretrained
word embedding gives a more desirable training result.

* Multi-label classification achieves higher accuracy with
lower embedding dimension.

CONCLUSION

* Un-pretrained word embedding is more suitable for
small-sized corpus.

 Better word embeddings can be achieved while
maximizing the learning objective.

e Bi-directional LSTM makes lower dimensional word
embedding achieves even better result while improving
efficiency.
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