Optimal Electric Vehicle Charging Strategy based on Deep Reinforcement Learning
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satisfy the user’s charging needs and protect the EV battery. e
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TD3[2] algorithm.

TD3 algorithm is an improved version of DDPG
algorithm and focuses on dealing with the
overestimation bias problem with the value function,
which may lead to suboptimal policies[3].

The results validate that the proposed method outperforms
traditional TD3 algorithm in terms of economy and user

satisfaction.
CONCLUSIONS

An optimal EV charging strategy based on TD3 algorithm is
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Agent proposed to reduce the charging costs of EV users while
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. A knowledge-assisted TD3 algorithm with imitation RESULT Prior knowledge and imitation learning methods are combined
learning for EV charging control 16900, <corer 5 097668578917305 with the TD3 algorithm to improve the robustness and

ffici f the charging strategy.
» Knowledge-assisted: . m efficiency of the charging strategy

The numerical tests have demonstrated the effectiveness and
advantages of the proposed method.
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