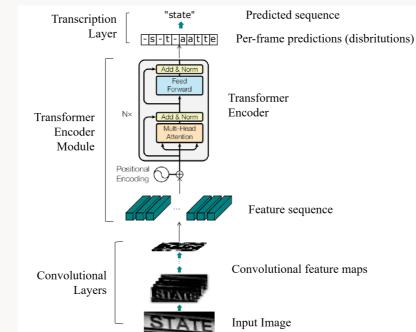
Scene Text Recognition via a Modified CRNN Model

Abstract


- Words in natural images often possess irregular shapes, which are caused by perspective distortion, curved character placement, etc.
- We replace the original bidirectional LSTM with a Transformer encoder to enhance the ability of modeling the long-term dependencies of texts.
- Our optimization of loss function and pre-training process further improve the recognition performance of the original CRNN model.

Motivation

- ▶ Huge challenges: complicated background, unbalanced illumination, arbitrary lengths, occluded text, and character segmentation.
- Methods: RNN-based, attention-based, language model, semantic information, multi-object network, end-to-end architecture.
- CRNN, an classic and popular approach for image-based sequence recognition, needs to speed up and be more practical.

Method

Text recognition network

- Optimization of loss function
 - Connectionist Temporal Classification (CTC)
 - Weight normalization
 - Angle loss function
- Pre-training process
 - Data augmentation
 - "CNN+Transformer"+MLP
 - Soft-DTW distance and stop gradient operation

Conclusion

- parallel and efficient.

Reference

Recognition, 2021, pp. 15750-1.

Results

Method	IIIT5K	SVT	IC03	IC13	Method
CRNN	78.2	80.8	89.4	86.7	EnEsCTC
CRNN+Transformer	82.90	81.72	90.66	88.96	ACE(1D, Cross Ent
CRNN+Transformer+Weight Normalization	83.57	82.69	91.23	89.06	Reinterpreting CT
Our method (CRNN+Transformer+Weight Normalization+Pre-training)	83.40	83.15	91.69	90.34	Our method

(a) Results of Our Proposed Network

Zhang Boyang, Cao Shiji

suikakon@163.com Tsinghua-Berkerly Shenzhen Institute, Tsinghua University, China

The transformer encoder module obtains more context information and gains robustness, and the training process of the proposed method is highly

▶ With our optimization of loss function and the implementation pre-training, the text recognition network can further significantly increase recognition accuracy on scene text.

The proposed scene text recognition system is competitive compared with the traditional "CRNN+CTC" methods.

[1] B. Shi, X. Bai and C. Yao, "An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 11, pp. 2298-2304, 1 Nov. 2017, doi: 10.1109/TPAMI.2016.26463. [2] A. Graves, "Supervised sequence labelling", in Supervised sequence labelling with recurrent neural networks, Springer, 2012, p.

[3] X. Chen and K. He, "Exploring simple siamese representation learning", in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

	IIIT5K	SVT	IC03	IC13
	82.0	80.6	92.0	90.6
ntropy)	82.3	82.6	92.1	89.7
ТС	81.1	82.2	91.2	87.7
	83.40	83.15	91.69	90.34

(b) Comparison with Mainstream Networks